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Chapter 1

Introduction

This thesis presents a proof of concept for a trade structuring system that maps an in-
vestor’s distributional views on an underlying variable into an implementable derivatives
position, assuming a sufficiently liquid listed options market exists for the underlying.
For simplicity, the underlying variable is taken to be a security price throughout. To
ensure generality, the framework is fully non-parametric and does not impose a para-
metric model for the underlying distribution. Many of its objects and steps can also be
interpreted through the lens of Bayesian probability, so the resulting construction can be

viewed as a non-parametric Bayesian trade structuring system.

In brief, the system infers a market-implied prior distribution from option prices and in-
corporates investor views as constraints to obtain a posterior distribution that deviates
minimally from the prior while rendering the views true. The posterior then determines
an optimal trade structure under a chosen objective, such as expected log return growth,
Sharpe ratio, or any other function of the distribution. Several examples demonstrate that
the system produces sensible recommendations in benchmark scenarios and remains flexi-
ble enough to accommodate practical constraints such as liquidity, and transaction costs.

Extensions for future work are discussed, including multi-asset, multi-period structuring.



Chapter 2

The Market-Implied Distribution

The first essential notion that must be established is that, by the fundamental theorems
of asset pricing, if no arbitrage opportunities exist in a market, then prices in that market
must imply a risk-neutral probability distribution. This is most straightforwardly demon-

strated by risk-neutral valuation, a common and important derivatives pricing technique.

2.1 Risk-Neutral Valuation

Risk-neutral valuation obtains the price of a derivative X by finding a replicating portfolio
Y that has the same payoff in all states of the world and is composed of assets whose
prices are observable in the market. Assuming there are no arbitrage opportunities, the
price of X must be equal to the price of Y, giving us a way to price X without making
reference to its underlying’s real-world probability distribution P. This reasoning can
be also extended to securities which cannot be replicated statically using one unchanging
portfolio and must instead be replicated continuously using a portfolio whose composition
changes over time in response to changes in a set of relevant variables. Options are one
such case, with continuous replication underpinning the foundational Black-Scholes model

(Black and Scholes 1973).



2.2 The Risk-Neutral Measure

Conveniently, risk-neutral valuation implies a probability measure @), equivalent to P for
pricing purposes, called the risk-neutral measure. This measure can be thought of as what

the market’s estimate of P would be if investors were risk-neutral.!

In general, investors are not risk neutral, and we should be careful not to confuse @) for
P. However, their equivalence for pricing purposes means that ¢) can be used to structure
trades, because as long as the posterior we will construct leads to different prices than
our risk-neutral prior, and the views used to construct it are correct, the position can be

justly considered as providing positive profits in expectation.

To see how prices imply risk-neutral probabilities, consider a simple binary bet with a
payoff function 7., (A) based on an event A € A = {A, A’} that occurs with probability p
in the discrete probability space (2, A, P):

M if A
m,(A) = (2.1)
0 if A

If the bet is fairly priced such that expected profits are equal to zero for both sides, then

its price V' and payout M fully specify the discrete risk-neutral measure:

E(H)sz—VzO@Qz(%,l—%) (2.2)

'We can extend the analogy slightly to the case where the risk-preferences of investors weighted by
their market impact are neutral “on average”.



This intuition is formalized and extended by the First Fundamental Theorem of Asset
Pricing (see Pascucci 2011, Ch. 2), which says that a discrete market on a discrete

probability space is arbitrage-free if and only if 3Q) ~ P such that,? denoting the price S:

So = Eg(Sr)e™™ (2.3)
Eo(Sry1 | Si1,...,Sr) = Sr (2.4)
P(A) =0 < Q(A) =0 (2.5)

The First Fundamental Theorem can also be extended to continuous processes, guaran-
teeing the same properties as above but under a stronger notion of arbitrage known as

“no free lunch with vanishing risk” or NFLVR (see Delbaen and Schachermayer 1994).

All security prices contain information about the risk-neutral measure under a strong
enough definition of no-arbitrage, but not to the same extent. For example, assuming
that the set of possible prices of a stock is an interval S C R*, the current price Sy only
implies Eq(S7) for some future time 7" by (2.3), which is far from enough to fully specify
Q. In fact, to try to recover () without making further assumptions, we’ll need prices

from the entire options chain for that date.

As a rule of thumb, it can be said that the more complex the payoff, the more information
the price contains about the underlying variable’s risk-neutral measure. To see why,
consider the fact that expected option payoffs depend on volatility due to their non-linear
exposure to the price (i.e. non-zero gamma) as a result of Jensen’s inequality, while

expected stock or future payoffs do not depend on volatility due to their linearity.

ZNote the similarity between condition (2.2) and conditions (2.3) and (2.4).



2.3 Recovering Q

As a first foray into recovering the risk-neutral measure from option price, we can employ
some useful properties of the butterfly structure, a linear combination of vanilla options
that can be constructed the same way using either calls or puts. The payoff function and
price of a butterfly with center strike K* and strike spacing A, denoted by mp and B

respectively, can be expressed in terms of call payoffs and prices, denoted no and C, as:
B(K*, A, T)=C(K*—=A, T)-2C(K*, T)+ C(K*+ A, T) (2.6)

WB(K*, A, ST) = 7T0<K* - A, ST) — 27Tc(K*7 ST) + Wc(K* + A, ST> (27)

Resulting in a concave payoff that takes on its maximum value A when Sy = K*:

5 4

30 40 50 B0 70
Underlying Price

Figure 2.1: A butterfly payoff with K* = 50 and A = 5.

Assuming Sy € {S|S = nA, n € Z}, the connection between butterfly prices and prob-
abilities is simple because mp = 7., paying out M = A if and only if Sp = K™ since
St cannot take on another value in the region where the payoff is positive (i.e. between
strikes), enabling the retrieval of a risk-neutral probability by (2.2) after discounting the
payoff: 2ELTD) — po (S = K*).

Ae—rT



When we try to extend this argument to the case where S is a continuous random

variable by taking the limit, we encounter the following indeterminate form:

lima_o+ B(K*, A, T)
hIIlAHo-&- A

-3 (2.8)

If the PDF ¢(S7) is continuous, then the existence of %

is guaranteed by (2.3) for
reasons that will become clear with the derivation of the Breeden-Litzenberger formula

at the end of the section, enabling us to apply L’Hopital’s rule to show the following:

_ B(K*,A,T) 5 .. OB(K*, A T)
A —mga T ¢ dim A
. OC(K*— A, T) OC(K*+A,T)
_rT ) 9
= m TR T 2.9)
=€ oK oK
=0

This is a sensible result since the probability of a continuous random variable taking on

any single value is always zero:

K*+A
lim f(z)de = lim F(X+A)—F(X—-A)=0 (2.10)
A—0t

A—0t K*—A

Given the above, the natural next step is to try to find probability density from Butterfly
prices, which we can do by dividing by A once more and recognizing the expression as the

second order central difference of C'(K, T') on K (see Breeden and Litzenberger 1978):

B(K*, A, T)
_ . rT ) 9
= T
K*+ A, T)—2C(K*, T K*— A, T
_ Ty ST A T) Z 200 T) + O . 7) (2.11)
A—07t AZ?
o C



An alternative intuition for this is to interpret (2.9) as the price of a derivative with a
payoff equal to a butterfly payoff rescaled by A, which becomes a binary bet with M =1
in the limit,® implying that its price is equal to Po(Sr = K*) as discussed earlier.

mp(K A T) f1 S =K
hm —_— =

2.12
A—0t A ( )

0 otherwise

Another, more direct derivation of the Breeden-Litzenberger formula (Zhou 2018) is

CK)=e"" /000 max(z — K, 0) f(z) dx

=T /Oo(a; — K) f(z) do

K

ze_TT</ x f(z) dx—K/ f(z dx)
. a — —rT/ f
(2.13)

=e T </ f(z) dx — 1)
=e " (F(K)—-1)

. 826’([() o —er_F

CTaK2 ¢ 4K

PO(K
(i) = e )

If @ is not continuous, there is no general method to evaluate (2.8), but we can establish
some bounds on the risk-neutral probability of St being within the width of a butterfly.
Since 7 is bounded from above by 7, with M = A, B provides the following lower bound

(Bossu and P. Carr 2014, Ch. 3):

B(K*, A, T)

P(K* - A< S <K*+A)>eT A

(2.14)

3This kind of derivative is also known as an Arrow-Debreu security, or a double digital option.
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2.4 Real-World Considerations

In the real world, option chains have a limited number of strikes and only some of them
have liquid enough options associated to them for their prices to contain useful informa-

tion, this section will briefly cover some implications of this and ways to address them.

The discreteness of option strike listings means that almost all of the methods presented
herein must be discretized when implemented, e.g. differentiation must be approximated
using finite differences, and the reliability of the system therefore critically depends on

the stability of underlying the numerical approximations.

Additionally, illiquid options must be filtered from any given chain before it is used to
infer a risk-neutral measure. This is because their prices may reflect outdated information
or even imply arbitrage opportunities where none exist (since the last price may be far
from the price at which it is currently possible to trade), invalidating our central assump-
tion. Illiquid options can be discerned according to a variety of metrics including bid-ask

spread, volume, and market impact statistics (see Lybek and Sarr 2003).

To make use of all of the available information in the market, the put-call parity rela-
tionship, which follows from the no-arbitrage assumption (Stoll 1969), should be used to

generate the prices of calls wherever puts are more liquid:
C(K,T)=P(K,T)+ Sy — Ke ™" (2.15)

Yielding prices for a vector of strikes with sufficient liquidity denoted K = {K7, ..., K, }.

10



Furthermore, ask prices should be used as the reference for long positions, while bid prices
should be used as the reference for short positions, as these are the prices at which it is

actually possible to put each side of the trade on.*

The realities of option chains also imply that it is only possible to sample ) at certain
points (Sr € K) and that there are always price intervals for which no probabilities can

be recovered (I Z K). Two nonparametric methods to try to deal with this are:

1. Fitting a constrained spline to the volatility surface to generate additional prices

(see Ait-Sahalia and Duarte 2003).

2. Extending @) by the maximum entropy (uniform) distribution taking the value

1— [ q(z) dx

ki, on [0, K1) and (K,, o], where o is what the investor believes to be the

maximum possible price. This is useful to avoid inadvertently assuming that the

market deems St ¢ [Ky, K] to be impossible.

2.5 Comparison

To get a better sense of the effectiveness of the Breeden-Litzenberger formula in practice,
we can test how accurately it recovers the log-normal distribution from a simulated op-

tions chain priced via Black-Scholes with no implied volatility smile.

We will do this by plotting the recovered distribution and its Q-Q plot, as well as
the percentage error of the recovered distribution’s volatility against the coverage ra-

tio® Z = KZ;SOKO, the strike spacing A, and the true Black-Scholes volatility o.

4Short positions entail additional complexity including borrow costs and margin dynamics, which will
be addressed in a subsequent section.

5To replicate the fact that options tend to be more liquid the nearer they are to at-the-money, strikes
are generated in evenly both directions from Sy as Z grows.

11



It is important to note that the relationship of the errors with each variable may be
sensitive to the specific distribution that is being recovered and the values of its param-
eters and that the recovered distribution has not been adjusted via either of the options

presented at the end of Section 2.4.

Recovered Distributions

00175 A N —— Breeden-Litzenberger Distribution
[ Black-Scholes Distribution
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Figure 2.2: A distribution recovered from simulated prices.

So =50, Z=10, A=2 T =2, o=04, r=0.07
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Figure 2.3: A distribution recovered from simulated prices.

So=050, Z=7, A=5 T=0.5 0=04, r=0.02
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Q-Q Plot
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Figure 2.4: A Q-Q plot of the recovered distribution against the true distribution.
Sy=50, Z=15 A=1T=1 0=03, r=0.1
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Figure 2.5: Percentage volatility error against Z.

So=75 A=2 T=16=02 r=0
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Figure 2.6: Percentage volatility error against A.

So=50, Z=15T=1 0=02, r=0

% Valatility Error
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Figure 2.7: Percentage volatility error against o.

Sy=50, Z=15 A=2 T=1r=0

The relationships presented in these plots are quite intuitive and show that the recovered

distribution should be quite accurate for moderate values of the variables.
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Chapter 3

The Fair Posterior

The next step is to construct a posterior probability distribution F', which we’ll call the
“fair posterior”. Informally, our aim in constructing the fair posterior is to construct
the distribution that renders () the “least wrong” it could be while ensuring our views,
denoted V, are correct. Loosely, this is analogous to ensuring that derivatives on this

market are the “least mispriced” they could be under F'.

This is desirable philosophically, as a way of respecting the information baked into market
prices, and practically because it ensures that expected profits are maximally conserva-
tive, which is useful for trade sizing. It is loosely analogous to assuming that anything

that the investor does not have a view on is best estimated by the market.!

In practice, this means minimizing a measure of how different F' is from the market-
implied distribution subject to the view set, which we restrict to be a set of consistent
constraints on statistics of F', consistency meaning the absence of contradictions that

mean no solution can be found. Some examples of inconsistent Vs are:

ITf this were not the case, then the fair posterior should simply be the maximum-entropy distribution
corresponding to the view set.

15



1. V={FEp(Sr) > 10, Ep(Sr) < 10} is inconsistent for obvious reasons.
2. V={o% > Ep(S2), Er(Sr) > 0} is inconsistent because 0% = Er(S2) — Er(St)?.

3. V.= {or > 5} with « = 15, p = 10, Ky = 5 is inconsistent because op <
V(o — p)(u — Ko) (Bhatia and Davis 2000).

3.1 Ground Rules

There are five conditions which must be ensured when transforming () into F' to ensure
that the posterior is valid, allows the use of the measure of difference we’ll use (the
Kullback-Leibler divergence), and does not introduce arbitrage opportunities (Carr and

Madan 2005). These can be implemented as constraints in a suitable optimizer, they are:

/ f(z) de =1 (3.1)
dom(f)

f(x) >0, Yz € dom(f) (3.2)

(@) =0 < q(z) =0 (3.3)

Bp(K*, A, T) >0, VK* € {K,,..., K, 1} CK (3.4)
Cp(Ky, T) — Cp(K,, T) >0, ¥Y(K,, K;) €K? b>a (3.5)

3.2 The Kullback-Leibler Divergence

Of the many functions that could be used to measure the difference between the fair
posterior and the market-implied distribution, the Kullback-Leibler divergence of F' from
(), denoted Dy, (F || Q), is the most suitable for our purposes. Minimizing Dk (F || Q)
will endow F' with precisely the intended properties because it is the expected value of

the log-likelihood ratio of F' relative to (), which is:

16



1. The most powerful statistic for determining whether two distributions are different?

according to the Neyman-Pearson lemma (Kullback 1959).

2. Closely related to the measure of risk-adjusted expected returns due to mispricing

which we’ll use to assess payoff optimality, as we’ll show.
3. Interpretable as both:

(a) The excess surprise from believing Py(A) is the probability of an event when
it is actually Pr(A), measuring how wrong believing in @ is if F' is correct.
(b) The Bayes factor @ is updated by to get F', a reflection of how much rendering

the view set true changes the posterior relative to the prior.

The continuous Kullback-Leibler divergence of F' from () is:

DaFIl Q) = [ f@) (1og ! ((5) da (3.6)

The discrete Kullback-Leibler divergence of F' from () is:

Dra(F Q)= 3 Pea) toe (1)) (3.7)
AcA

3.3 Minimization

The simplest approach to minimization would be to assume a form for the posterior
distribution and optimize its parameters, but we will continue to use a non-parametric
approach to maximize generality, taking the probabilities themselves as the parameters to
be optimized subject to the view set and ground rules. This will be done using a Python

library that employs a conjugate gradient method.

2In the sense that it has the highest probability of detecting a true positive.

17



3.4 Examples

The Python library used for this implementation can only handle discrete distributions,
so the prior and posterior in this example will be given by finding the lower bound for
the interval corresponding to each non-overlapping butterfly width by (2.14), normalizing,
obtaining the discrete fair posterior from the discrete prior, and then assuming the price

to be uniformly distributed within each interval to get a probability density function.

—— Market-lmplied Distribution

0.08 1 Fair Posterior

0.07
0.06 4

0.05 q

fi57)

0.04 4

0.03 4

0.02 4

0.01 4

0.00 T T T — T T T
0 20 40 &0 BO 100 120 140

5r

Figure 3.1: A fair posterior with reduced expected value.

—— Market-Implied Distribution
0.05 4 Fair Posterior
0.04 -
<+ 0.03
[F5)
=
0.02 1
0.01 -
0.00 = T — T T
o 50 100 150 200
Sr

Figure 3.2: A fair posterior with reduced variance.
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Chapter 4

The Optimal Trade

4.1 Measuring Optimality

Given F', we can obtain an optimal trade by finding the combination of securities which
maximizes an objective function, some obvious candidates being expected returns or the
Sharpe ratio. In this implementation, we will maximize expected log return a la Kelly,
accounting for the volatility-drag associated with reinvestment across trials and maximiz-

ing terminal wealth in the limit (Kelly 1956).!

Denoting the log return function by:

0.(57) = tog (7 (1)

The continuous and discrete expected log return of a long position are, respectively:

“+oo

G(F,V, m):= f(z)log g.(Sr) dz (4.2)

Tt is worth noting that the fair posterior also provides estimates of variance and skewness, which can
be useful in position sizing.

19



G(Fv V7 77) = Z pF(A) 1Oggx(ST> (4'3)
AcA

Extending this to a long-short derivatives portfolio (i.e. an option structure) is not trivial

however, due to the complexities introduced by leverage and the fact that the typical

form of the short return R = “//—0 diverges to infinity as the terminal price goes to zero,
T

throwing off any attempts at return-based optimization.

To account for this, we must construct long and short position payoff and cost functions,
denoted H and J respectively, that can avoid infinite short returns and account for each
position’s leverage at expiry based on p. 5-7 in the CBOE Margin Manual 2021, ignoring
variation margin and any adjustments associated to particular structures.? Letting %
denote a put if x is a call and vice versa, and taking j to be an indicator variable taking

the value 1 for a long position and —1 for a short position, these can be defined as follows:

max (7, (St) — 0.25V, 0) j=1
H,(Sr. j) = (4.4)

max(Vy + Jo(Sr, j) — m(S7), 0) j=—1

max(V, — m.(Sr), 0.75V}) j=1

max(wx(K, ST), 02(50 — 7T5;(K, So)), O]_So) j = -1

Giving us the return of a long-short options portfolio X as:

_ 2x Ho(S57, )
Rx(Sr) = S u(Sm ) (4.6)

Note that since margin requirements are slightly less stringent for long positions, being

long and short the same options structure actually leaves the portfolio slightly net long.

2Tt is also worth noting that trading on margin introduces path dependency into the cost function
(the collateral required changes dynamically), but it would be too complex to account for this here.

20



4.2 The Optimal Trade

We could try to maximize G directly to find the optimal trade but since the log function
is only defined for the positive real numbers and returns are often zero, we’d be forced to

use an approximation. For example, a second-order Taylor expansion around E(Ry):

Bllog(Rx) = log(E(Rx)) + 3 -0 S B(Ry — B(R0) (@47
-~ G(F, X) ~log(E(Ry)) — % (4.8)

To avoid using an approximation, we will first find the optimal return function as in
Soklakov 2011, denoted R(St), and then find the trade whose return function best ap-
proximates it. To find R(Sr), we will re-frame the problem of optimal investment as
the problem of finding the optimal weight vector W* = {wy,... w4} for a portfolio
of binary bets 8 where each bet pays out M if and only if the corresponding event in
A ={Sr € I;| I; € I} occurs, where [ is a partition of [0, a] and all events are mutually
exclusive. As mentioned in section 3.4, we will recover a distribution of this form directly
in this implementation, but it can also be obtained from any distribution by integrating
the PDF or summing the PMF (depending on whether it’s continuous or discrete) over

the subintervals of the partition.

blx)

0

Figure 4.1: An intervalized continuous distribution.
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Letting V = {v;, ..., v/} and noting that 73(A) = w; M, we can show (Soklakov 2011):
W* = arg mV%X(G(F, p)) = arg mV%X(G(F, WV, M xW))=F (4.9)

Then, interpreting the index as a function of the underlying price i = i(Sy) that indicates

which interval it is in, we can show the following by (2.2) ibid.?

R(Sr) = Pr(i(Sr) % 5 = iggg ;; -1 g)) (4.10)

Implying that the Kullback-Leibler divergence is the maximum expected log return under

F attainable by investing in binary bets priced according to (), as alluded to earlier:

Pr(A)
Po(A)

max(G) = Y Pr(A) log = Dxi(F || Q) (4.11)

AcA
Thereby showing that minimizing the Kullback-Leibler divergence of F' from () precisely
minimizes the mispricing of derivatives and implying that N itself inherits the interpreta-

tion of Dk (F || @) as the Bayes factor:

f(Sr) =N(Sr)q(S7)
P(research | St)
P(research)

P(Sr | research) = P(Sr)

The optimal trade of order n for a given underlier, denoted W*(I"), can then be defined
as the sub-portfolio (n-combination with repetitions) of the set of payoffs attainable by
taking long or short positions in the liquid options associated to the underlier, denoted T',
that minimizes a metric D(W) which measures the difference between its return function

R\I/(ST) and N(ST) .

3This is valid when the bet prices imply fair odds such that their sum is equal to one as in (2.2), but
the same reasoning can be extended to unfair odds by normalizing returns.
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Using the total square deviation:

D(V) = / (Ru(Sr) — N(Sz))? dSr (4.12)
U (T) := arg ‘11}’3%?) D(¥,, (') (4.13)

This boils down to an integer programming problem, which is NP-complete. Though find-
ing exact solutions via brute-force search is feasible in a matter of minutes for small struc-
tures with n < 3, for more complex structures optimization quickly becomes intractable
due to combinatorial explosion, so heuristic methods such as simulated annealing or hill

climbing must be used to find approximate solutions (see Chen, Batson, and Dang 2011).

4.3 Examples

One way of confirming that the system behaves as intended is to check that it produces
sensible results in line with the typically recommended structures for simple view sets. To
do so, we will supply common view sets for which there are commonly accepted solutions,
and obtain the market-implied distribution from call prices generated via Black-Scholes

with a set of parameters denoted y, producing a log-normal distribution.

— W[5 T)
800 RulS_T)

500

Return

400

200

0 20 40 60 80 100 120 140

Figure 4.2: The return function of W} for a bearish view on E(Sr).
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For x = (So=75,Z=10, A=1,0=02,T=1,r=0.01) and V = {Er(Sy) = 55}, we
obtain a long out of the money put position, which is one of two structures typically

recommended for this view and n = 1 (long put or short call).

30 — N(ET)

Ru(S_T)
25

20

Return

15

10

0.5

0.0 ; . : .
0 50 100 150 200
57
Figure 4.3: The return function of ¥} for a bearish view on o. For
X=(So=75,2=10,A=1,0=02,T=10,r =0) and V= {op = 0.15}, we obtain a

short strangle position, which is the structure that is typically recommended for this

view and n = 2.

40 — N5 T)
Rul(5_T)

I~

0 20 40 B0 B0 100 120 140
Sr

Figure 4.4: The return function of W} for a bullish view on Skew(Sr). For
X=(So=75,2=10,A=1,0=0.2,T7=30,r=0) and V = {skewr(Sr) = 3750000},
we obtain a long out of the money put position, which is one of two structures typically

recommended for this view and n = 2 (risk reversal or bear spread).
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Chapter 5

Extensions

5.1 Extending Optimality

In Chapter 3, we derived a method to find the optimal trade using n positions, leaving
open the question of what value n should take on. Before sketching an answer to this,
we will extend the framework to account for transaction costs and investors’ budget con-

straint.

Each additional position in ¥ entails some amount of transaction costs (exchange fees,
slippage etc.) that can be estimated according to the security’s liquidity. Importantly, the
transaction cost estimate for each position, denoted 7., should increase with the number of
repetitions of any given position in the trade because the higher the volume of a position in
the trade, the more market impact the investor will have when putting it on. 7, can then

be included in each position’s cost function, yielding a more realistic trade return function.

To speed up the system and make it more useful for small investors who cannot afford to

trade larger structures we can restrict the search space of possible trades to those which
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the investor can afford with the amount of capital at their disposal 7, denoted ®,,:

©, = {¥ | max({Ju(S7) | Sr € [0, a]}) < n} (5.1)

The introduction of 74 and ®,, makes finding the optimal trade across all levels of n easier

because:

1. If the search space isn’t restricted to ®, it is infinite, rendering exhaustive search
impossible and search in general more difficult. Though exhaustive search for a
global minimum is still likely to be infeasible for large values of 7, it is in principle

possible and it should be achievable for small values of initial capital.

2. If 7, for each position isn’t included in Jg(Sr), D(¥}) is guaranteed to have no
unique minimum across levels of n in an unrestricted search space. This is because

supposing there exists a globally optimal structure Wy:

€Z = D(U') = D(T%) (5.2)

¢7 = D(U*) > D(T%) (5.3)

z|ls =3

Since U} must deviate from W}, for values of n which are not multiples of N and

simply be & of repetitions of Wy for those which are. In this case, ¥} could be
identified by observing the repetition of a structure, but this would require comput-
ing the optimal trade up to 2N. Including 7y remedies this because it is increasing
on repetitions of each position, meaning that repeating the same structure does not
yield the same return profile and D(W¥?*) would be monotonically increasing on n
for n > N. Then, assuming D(¥?) is monotonically decreasing on n while n < N !
this allows us to find the optimal structure in N 4 1 iterations rather than in 2NV

by identifying N as the value of n after which D(¥}) begins to increase.

IThis is intuitive but nonetheless an assumption, proof of this conjecture is also left as an extension.
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Thus, U, is guaranteed to exist and can be found as soon as D(U*) begins to increase
or ®, is exhausted. An additional tactic that could be used to speed up this process is to

implement some tolerance level for D(¥}) below which a trade is considered optimal.

5.2 Existing Positions

The system can straightforwardly be expanded to deal with existing positions in a given
market by including the payoff and cost functions of existing positions in the return
calculations, thereby finding the combination which most improves the portfolio position

by the usual process.

5.3 Structure Preferences

Similarly, investor preferences regarding structures can easily be accommodated. If an
investor wants to trade a particular structure and only wants advice on strike selection
from the system, they can restrict ®, to be the set of affordable trades composed of the
available variants of that structure. Conversely, if the investor doesn’t want to trade a
particular structure, they can simply exclude it from ®,. In both cases, the investor

speeds up the system by reducing the search space.

5.4 The Optimal Portfolio

Given views on the distribution of several securities’ prices at several option expira-
tions, the framework could potentially be extended to incorporate relative views e.g.

V ={ox > oy} and find the optimal portfolio cross-sectionally and across expirations.

The fair posterior can be found independently for each security and expiration if no rel-

ative views are given. If relative views are given, the fair posteriors for the distribution
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pertaining to the views must be obtained jointly, this could be done by minimizing the
sum of their Kullback-Leibler divergences, for example. It should also be noted that if
relative views concern the same security at different points in time, the additional con-
straint that all calendar spread prices are non-negative must be implemented (Carr and
Madan 2005). Then, the optimal portfolio could be found using the usual process but

minimizing the sum of the difference metric across each security and expiration.

Another subtlety which must be accounted for in doing this is that different payoffs occur
at different times, so trades with earlier expirations should be favored over trades with
later expirations (since any proceeds can be reinvested at the risk free rate). This can be
done crudely by discounting the distance metric for each trade before minimizing to find
the optimal trade. Additionally, having positions that expire at different times opens the
door to re-balancing, which can be achieved by re-evaluating the optimal trade given the

portfolio, along the lines of what was described in Section 5.2.

5.5 Extending Views

Due to imperfections in the minimization process used in this implementation, it is possi-
ble that no solution will be found for a consistent view set. One way of dealing with this
would be to dampen views (reducing their percentage variation from the statistic they
regard according to the prior) until a solution can be found. This can be done using a
confidence ranking, iterating over the view set from lowest to highest confidence, damp-

ening each view somewhat until a solution can be found.

A more extensive treatment of confidence weighting and generating the posterior under

extreme views can be found in Meucci, Ardia, and Keel 2010.
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Chapter 6

Conclusion

In summary, this thesis demonstrates the feasibility of a fully non-parametric, Bayesian
trade-structuring system that links market prices, investor views, and implementable
option portfolios within a single coherent framework. Starting from a market-implied
risk-neutral prior, the system incorporates subjective constraints via minimum-relative-
entropy updating to obtain a “fair” posterior that preserves as much information as pos-
sible from observed prices while enforcing the view set. The resulting posterior yields an
optimal target payoff profile, which can then be approximated using liquid listed options
under realistic constraints. Across representative examples, the framework produces intu-
itive structures consistent with standard practitioner recommendations, while remaining
flexible enough to accommodate practical considerations such as liquidity filtering, trans-

action costs, and existing portfolio exposures.
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